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Tridiagonal Fourth Order Approximations 
to General Two-Point Nonlinear Boundary 

Value Problems with Mixed Boundary Conditions 

By Robert S. Stepleman 

Abstract. This paper develops fourth order discretizations to the two-point 
boundary value problem 

y(2)Wt) =A(t, y t)IY(1)(0)) 

L0Y(0) -_ y(1(O) = 60, e1 y(l) + 01y/)(1) = 1- 

These discretizations have the desirable properties that they are tridiagonal and 
of "positive type". 

1. Introduction. In this paper we consider discretization techniques for the non- 
linear two-point boundary value problem 

(a) y (2)(t) = f(t, y (t), y (1 )(t)), 
(1.1) (b) (0y(O)-f3y(l)(0)80, =a1 y(1) ? f31 y()(1) = 61 

wheref: I x R2 >*R2 andI= [-, 1 +e], for some e> 0. Herey(k)(t) repre- 
sents the kth derivative. We also assume 

(1.2) ao + 1 >0, ?0,151>0, ao + S0 > 1 oil + ? 1 > 0. 

In particular, we shall derive for the first time, direct finite-difference analogues 
of (1.1) which have the following two key properties. First, they will have solutions 
which approximate the solution to (1.1) with order h4 globally over the mesh points 
of a uniform mesh of width h; and second, when applied to the linear problem 

(1.3) y(2)(t) + p(t)y(1)(t) + q(t)y(t) = r(t) 

with condition (1 .b), the linear system of equations resulting will be both tridiagonal 
and of "positive type" (as will the Jacobian matrix of (1.1)). Thus, we will have a 
method that will yield a high order solution and be easy to analyze. The method will 
have the same number of matrix operations as solving (1.1) to order h2; however, there 
will be more functional evaluations. 

Recent work on algorithms for two-point boundary value problems for first order 
nonlinear systems (see e.g. Keller [7] ) has produced methods that can be applied in 
much more general circumstances than ours. This does not mean the techniques in 
this paper are only of historical interest; however, in that context they do close a gap 
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in the theory and application of positive type finite-difference methods to two-point 
boundary value problems. We shall show, for problem (1.1), that the methods in this 
paper are competitive and useful. 

The classical finite-difference algorithms for (1.1) are tridiagonal and of positive 
type, but converge only of order h2 (see e.g. Keller [6], or Aziz and Hubbard [2] for 
the linear case). These algorithms combined with Richardson extrapolation (when 
applicable) do give an order h4 method, however, an indirect one. A comparison be- 
tween this method and our direct order h4 algorithm will be given in Section 4. Col- 
location techniques have also been applied to (1.1) to give fourth order methods (see 
e.g. Daniel and Swartz [4] or Russell and Shampine [10] ). Depending on the basis 
used for the splines in this technique, the resulting matrix problem may be anywhere 
from an effective bandwidth of five, to a matrix problem requiring 0(h-2) operations 
to solve the linear system. A more serious difficulty with these methods is that, at 
least for some basis that give "small" bandwidth, terms of 0(h- 1) can appear on the 
subdiagonal with terms of 0(1) on the diagonal; this can give stability problems due to 
roundoff error and partial pivoting may be necessary (see [4, pp. 18-22] ). Since our 
algorithm is of positive type, it is diagonally dominant and this difficulty cannot occur. 
In Pereyra [9], it is suggested that difference corrections could be applied to the 
0(h2) analogue of (1.1) to obtain an 0(h4) solution. This has not yet been done or 
rigorously justified, so it is not clear how the two methods compare. However, based 
on some other results in [9], it appears that Pereyra's method might well be the best 
way to obtain high order solutions of (1.1). Shoosmith [11] suggests replacing all 
derivatives in (1.1) by their fourth order finite-difference analogues. This yields a five 
diagonal matrix, which is not of positive type (but possibly is monotone). The local 
truncation error of this method is order h4, but no global truncation error estimates or 
stability results are given when the boundary conditions contain the first derivative. 

We note that we make no attempt to derive conditions for the existence and 
uniqueness of solutions to (1.1), being concerned here only with the numerical ana- 
lysts problem of determining the conditions under which a given numerical method 
will converge and its order of convergence. Hence we assume that at least one solution 
to (1.1) exists, and let y denote any such solution. 

In Section 2 we will consider the local truncation error of the method. Since all 
the proofs in that section are simple in idea, based on Taylor series and algebraic manipu- 

dlation, but somewhat lengthy because of the details involved, we shall omit most of 
them. In Section 3 we obtain our global error estimate and stability result, while in 
Section 4 we consider some numerical experience and computational details about the 
method. 

Extensions to partial differential equations of the idea of obtaining high order 
finite-difference approximations to a complicated operator that have the same matrix 
structure as the approximation to some simpler operator are possible. For one applica- 
tion of this idea see Stepleman [12]. 

2. The Method and Local Truncation Error. We shall consider two slightly differ- 
ent discretizations. The one with the fewer function evaluations will require stronger 
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hypothesis on f to be of fourth order. Thus, which should be used in a given situation 
will depend on f. 

Let h = 1/N, N some integer, thn = (n -1)h, n = ... , N + 2 andn = 

3/2, N + 'h. Define Yhn = Y(thnf) and yak) = y (k)(thn). Consider first the approxima- 
tion at the boundary. If the global discretization error is to be fourth order, we will 
need an approximation to y (1)(O) and y (1)(i) of that order. Set 

(2.1)~ ~ ~ ~~I mh, i =(Yh, i+ m - Yh i- m)12 mh 

A standard technique is to use yh? to approximate y(l )(o). However, 

(2.2) yP1 =y(1)(0) + 6y(3)(O) + 0(h4) 

so that this discretization is only 0(h2). If we had an approximation to y(3)(0) that 
was also 0(h2), we could then use (2.2) in the obvious way to get an 0(h4) discretiza- 
tion of y(l)(o). This is what we want to do, recalling, however, that we have an added 
constraint that the resulting discretization gives rise to a tridiagonal matrix problem. 

We now introduce some notation. Set 

(2.3) Ym = (3Yhi - 4Yh,i-m +yh,i-2m)12mh, 

Ymhi= (4Yh,i+m - 3Yhi - Yh,i+2m)I2mh, 
and 

(2.4) mfh, i = f (thl, hid YMh, i) 

with similar definitions for +fhi and fh i. Also, set 

(2.5) YMh,i (Yh,i+m + Yhi-m)I2. 

A simple Taylor series argument shows: 
LEMMA 2.1. Let y E C5 [I]. Then 

(2.6) (mh + 
2 

Vhi) + (h 4) 

and 

=+ (1 (mh)2 -3 (mh)3 ?4 0(h4), 
Amh,i phi 3 Yh,i-m 12 Yh,i-m 

(2.7) (2.7) 
~~(1) (mh)2 () (mh)3 

Ymh,i Yhi 3 Yh,i+m ? 12 Yh i+m ? 0(h4). 

Since these discretizations are only order h2, we will need to improve them before 
we use them. We introduce some new discretizations to this end. Set: 

(2.8) Yhi Ya - 8 (th, iv Y= N +1 h /2,i -8 h iIY /2, 2 

|Ymh, i Ymh, i 12(thji+m 
- 

tmh, i-m), 

(2.9) Y+ Yr+ + mh _ 

Ymh,i Ymh?i +6 (fmh,i+2m fhi), 
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and 

(2.10) f- =f(thj PiyflI (2.10)~~~~ tmh, E = h~ti i Yhsi) Ymh, i 

with similar definitions for f i 
- 

and fPjr i. 
The next lemma, whose proof is based on the Mean Value Theorem and some 

manipulation is a key to our local truncation error results. 
LEMMA 2.2. Let y E C 5 [I ] with fp(r, pi q) and fq(r, p, q) bounded and 

fq(r, p, q) Lipschitz continuous in q on I x R2. Then 

(2.11) Y2 =3 ( fhi+ m -fmai-m)I2mh + 0(h2). 

Also, 

1 P0 -Y(l) ? 0(h4) 'mh, i hi '~-) 

(2.12) Y P+ ( Y) + 0(h3), (mh zi _hi 

mh,i P(i) + 0(h3), 

and +hi =Yhi ? 0(h 4). 

Proof. Calculate that 

(3) fih, i+m fih, i-m (3) Yh,i7+m -yh,f-m 
Yhi 2mh Yhi 2mh 

+ hi+m tmh,i+m ? fr~hmi-m -h 
2mh 2mh 

Then using the Mean Value Theorem on the second and third term gives 

Th - [y(3) - (y(2) - Y(2) m)12 Th [Phi hi+m h, i-m/2mh] 

fq (O 1) (Yh, i?+ m -h, i-m Ym h, i+m + Ym h, i-m)12mh 

? (fq(02) fq(0i)) (Ymhi- m Y2?)m)I2mh. 

Here Ol 02 I x R2 and 01i = 0 2i+0(h), i = 1, 2, 3. That the first bracket is 
order h2 follows from the differentiability of y, that the second is follows from (2.7) 
and that the third is follows from (2.7) and the Lipschitz continuity of fq. 

The result (2.12) follows from (2.11) and (2.7), while the last conclusion follows 
from (2.6) and a very similar argument. 

We would like to approximate Y3(0) 2(fh+2 
- fho)/2h. However, since this 

directly involves Yh 0 Yh 1', and Yh2' it will not give a triangular matrix approximation. 
We would like an order h2 approximation that does not involve Yh o. What we will do 
is to use (2.3) and interpolate a point midway between th 1 and th2 . Thus, to approxi- 
mate y/3)(0) we use the expression 

(4 f~ 3/ 3fP- -fP+ )/ h. 
(th/2, 3/2 t1h/2,1 h /2,2 

However, this contains the nonmeshpoint Yh 3/2 We substitute Yh 3/2 for this point 
whenever it appears. Thus, we approximate 
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where the - denotes the substitution of Yh 3/2 for Yh 3/2* In a similar manner, we 
approximate 

h/2,N+ 1 h/2,N+1/2 hl2Nh YhN+ 1- 

Here the - denotes the substitution ofihN+1/2 for Yh, N+ /2- 
Then in a manner very similar to Lemma 2.2 we prove: 
LEMMA 2.3. Let the hypothesis of Lemma 2.2 hold. Then 

y(3)(0) = y(3)- + 0(h2), y(3)(1) = (3) + + O(h ), h,1 - ?N 0(2) 

and 

y ()(O) = y -- M-6 + o(h4), 

(2.13) h2 

-hN+ 1 6 Yh,N+ ? 

Because of the first term on the right in (2.13) these discretizations still contain 
the point YhO or YhN+ 2' respectively. However, these will disappear when we com- 
bine them with the interior discretization, which we now consider. 

At the points thn, N = 1, . . . , N + 1, we would like to approximate the dif- 
ferential equation to order h4. The standard discretization for the second derivative 
satisfies 

(2.14) p1)hi = (Yh,l+i 
- 2Yhi +Yh i-l)/h - 12 Y(4)(thi) + 0(h4). 

Thus, if we can approximate y(4)(thi) to order h 2 using only Yh 1 + i, Yh i, and Yh, i - 1 
we will have what we want. Since 

(2.15) (y (2(thj+0) - 2y(2)(thi) +Y (2)(th h_1))/h2 = y(4)(t h) + 0(h2), 

we need only approximate the expression on the left in (2.15) to 0(h2). Thus, we 
approximate this expression by (fP7 -2 fPo + +? 1)/h. 

Then in a manner analogous to Lemma 2.2, we have: 
LEMMA 2.4. Suppose the hypothesis of Lemma 2.2 holds. Then 

(2.16) y(4)(thi) (f,-1 -2 ft,? +fP +1)/h2 + 0(h2), 1 < i AN? 1. 

Then combining (2.14), (2.15), (2.16) we approximate problem (1.1) by 

Yh,i+1 hi1 2 h i- hi hi+) + 

(2.17) 
i= 1, ...,N+ 1, 

HEYhO =0 go [FO y h1I] + yh2 - 3 Oh 1 hhO5 
(2.18) 

Yh,N+2 g 1 al Yh,N+ 1] +YhN + 3 hN+1 + hrhN+2. 
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Substituting (2.18) into (2.17) where required for i = 1 and N + 1 gives rise to the 
required tridiagonal matrix problem. Here the Thi, i = O . . . N + 2, represent the 
local truncation errors caused by replacing all derivatives by difference quotients. 

Combining Lemma 2.1-Lemma 2.4 yields: 
THEOREM 2.5. Suppose the hypothesis of Lemma 2.2 holds. If, in addition, 

y E C6(I), then 

max 1T/hl = 0(h4). 
(2 .1 9) 06 i< N+ 2 

Discretizations, somewhat like (2.17) and (2.18), can be found in the literature 
for problems that do not involve y( 1) in the boundary condition or in the function 
(see e.g. Collatz [3, Chapter III] or Allen [1]). However, none appear for the general 
problem (1.1) which are order h4. 

If higher partials of f exist and are bounded, we can save a function evaluation at 
the interior grid points by using the discretization: 

(2.20) Yh-i+ 2Yhi +Yhi-1 = ,I[fi1 + 4fO. + 6f, ft i+i] + h2hi' 

In this case we have the following result: 
THEOREM 2.6. Let y E C 6(f ) and fq(r, p, q) be twice continuously differentiable 

in r, p, q with bounded partials through order three on I x R2. Then 

(2 21 ) max l * = 0(h4). 
2.21) 0iN+2 

It should be noted that if, say, f0 = 0 then tho is ignored and th 1 is considered 
a boundary point. In this case (2.17) starts with i = 2 instead of i = 1. 

3. Global Discretization Error. In this section we show that if y is the solution 
to (1.1) and uhn the solution to either (2.17) or (2.20) and (2.18) with the local 
truncation error set to zero, then 

(3.1) max uhn Yhn I = 0(h4). 

LEMMA 3.1. Set for N = 1/h, AN to be the (N + 1) x (N + 1) tridiagonal 
matrix 

0, + yo h -o 0 ?yh-0 

-1 -fNh 2+ (OcN + )h + ? Nh2 -1 - h 

AN= 

-1 -f3~1h 2 + N(f 1 + 
?N )h + N h2 

_ N N + zN N 

Suppose 7i > ?, i=0,. . . N, N N , aN > 0, ? N, aN +?y0 > m, 

N= 1, 2, . . .and yo + yN > O. Also assumeI casIl <K I, I NNI K 2i=O...,I 

where Ki and K2 are constants independent of N. Then for N sufficiently large (h suf- 

ficiently small) AN is nonsingular, A-.1 = (r..) satisfies r11 > 0, i, i = 1, . . . , N + 1 an 
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max max(r, 1rj,N + 1 = O(N), 

(3.2) 16j6N+ 1 

11AN 1 llo=O(N 2 ). 

Proof. That AN 1 exists and AN 7> 0 for N sufficiently large follows since AN 

is irreducibly diagonally dominant with positive diagonal and nonpositive off diagonal. 

Since To + TN > 0, we assume without loss of generality TN > 0. We now show (3.2). 

Set Vi = exp(2s) - exp((i -1) sh), i = 1, . . ,N + 1, s > 0. Calculate 

(AN V)1 = (- 1 - /Nh)(exp(2 s) - exp((i - I)sh)) 

+ [(2 ? /N + c2)h + TNhh2] [exp(2s) - exp(ish)] 

+ (- 1 - cih) (exp(2s) - exp((i + l)sh)), i = 2, . .. , N, 

> (1 + (3/Nh)exp((i - l)sh) - [2 + (O3k + cxN)h] exp(ish) 

+ (1 + cx/Nh)exp((i + l)sh) 

= exp((i - l)sh) [(1 + O3Nh) - [2 ? ((3/ ? c4')h] exp(sh) 

+ (1 + aNjh)exp(2sh)] 

= exp((i -)sh)h2 F(exp (sh) - 1) exp(sh)-1 N N)] 

Then since limh-O ((exp(sh) - 1)/h) = s, it follows for s > K1 + K2 and h sufficiently 

small that (AN V)i > Kh2 where K is a constant independent of h or i. 

Calculate 

(AN V )=1 (exp(2s) - 1) (aN ? 70hh) - aN(exp(2s) - exp(sh)) 

= a/N(exp(sh) - 1) + (exp(2s) - 1)yoh 

> h [aN (exp(sh) -1) + (exp(2s) - 1)-y ] > Kh 

for s>0 since N4> 0, m0 >0, aN +?0 >m > 0. 

(ANV)N+1 = (exp(2s) - exp(s))(( 3NN + yN h) - ,NN (exp(2s) - exp((I - h)s))) 

= (exp(2s) - exp(s))( yNh + ONN(exp((1 - h)s) - exp(s))) 

> yNh exp(2s) - exp(s) - K2exp(s) - exp(( - h)s) > Kh 

for s so large that eS > 1 + K2 sfyN and h sufficiently small. Since (A - 1A V) = V, 
and (A V)K > 0, K = 1, . . ., N + 1, we have for h sufficiently small, 

N+ 1 

E ri min (AV)K < Vi 
j= 1 16 K6 N+ 1 

so that for some constant K 
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N+1 K 
max S ri. <- 

1?i6N+1 j=1 h2 
Similarly, for i = 1 or N + 1 and h sufficiently small there is a constant K such that 

r11 <K/h, j = 1,... ,N? 1. 

Thus, (3.2) follows. 
THEOREM 3.2. Suppose w C RN+1 satisfies for h = 1/N 

(3.3) ANw = h2fN + h2l'N, 

where 

(3.4) max kr11ICh4, Iril?Ch3, i= 1,N+ 1, 

and 

(3.5) 1fNil KhIIwIL,, i= 2, ... ,N, IfN, il KIIIwILI, = 1,N + 1. 

Then for N sufficiently large 

(3.6) 11 WII0 = 0(h4). 

Proof. From (3.3) 

N+t N+1 
w- = h2 5 rij fN j + h E ri1TNJ,J 

j=l j=1 

Then from Lemma 3.1 and (3.4) and (3.5) we obtain 

IwiA h2(r11 +?rN+1)(IfNll + ifN,N+ll + TN + ?TNN+1I) 

N 
+ h2 , rij(lTNjl + IfNJI) 

< h(2K 11 w ?j. + 2Ch 3) + h2Il A 1-II. (Ch4 + KhlI wIIO,); 

and thus, 

li wiK. < 3khII wILo + (2C + h2 IIAK1II.)h4 . 

The conclusion now follows. 
The following corollary provides both a global error estimate and stability result. 
COROLLARY 3.3. Let y C C6[I ] and the hypothesis of Theorem 2.2 hold. 

Suppose in addition 

(3.7) fp(r, p, q) > O on I x R2. 

Then with uhn the solution to (2.17) and (2.18) with Thn = 0, n = 0,. . . , N + 2 

(3.8) max I Uhn Yhn I = 0(h ). 
16n<N+ 1 

Proof Let ehn 
= 

Yhn 
- Uhnf, n = 1, * ,N + 1. Then ehn satisfies 
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eh n-1 - 2ehn + ehn+I 

= 12 [hPn I (Y) -flpin- _(U) + 1?(fhp~n (Y-1~ p~) h, n hn+ I (Y) -h n+ ~ 

+h2r hn I<n?N+1. 

Here, for example,fhj ~ (u) =f(thf, Uhn, u05). Then using the Mean Value Theorem re- 
peatedly we obtain 

12 - h2f (O1) + [-fq(01) + 5fq(02) - - fq(0 3h 
h2 2 

+ ? (fq(04) + 3fq(05))(fq(0O) + lOfq(02) +fq(03))}eh,n-l 

? {-24 - lOfp(02)h2 - 2h(fq(01) -fq(03)) 

h 2 

6(fq( 4) ?fq(0S))(fq(0O) + lOfq(02) + fq(03 ehn 

? {12 - h2fp(03) + fq(O ) -5 fq(02)-2 fq(03)] h 

+ 24 (3fq(04) + fq(0S))(fq(0i) + 1 fq(02) + fq(03)) eh,n+ l 

12 (fP(05)eh,nf- fp(04)ehn +)(fq(O1) - 20fq(02) ?fq(O3)) ? 12h2Thn. 

Here O e [0, 1] x R2, i 1, . . ., 5, and O0 depends on n. Similarly, the boundary 
conditions (2.18) give: 

2 e ? + {a + ?6 [3 fq(06) - 4fq(07) + fq(08)]} hehl 

{ 0 03 0h 2F + -{- [4 fq(O 7)-3 fq(O6) fq(O8)] eh2 2 h F +ThO 2 6qq 

2 01 f ? + JV + [3fq(09) -4fq(01 ) +fq(01)d }hehN+l 
2 e~hN+ 2 ~j1 ? 

q6Iq1 
;~1~r~ m 

+ ? 0. + 6 [-3fq(O9) + 4fq(0I0) - hN =h2FI ? Th2N+2 

Here F0 and F1 satisfy 

I Fo I < Ko max(I eh21 , 1 eh 1 
) IF, I < Kl max(lehNl ,IehN+ 1) 

with Ko, K1 constant independent of h. 

After eliminating (when necessary) ehO and ehN+2' we can now apply the last 

theorem and obtain the desired result using (1.2) and Theorem 2.5. 

In an exactly analogous manner the next corollary follows. 
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COROLLARY 3.4. Let the hypothesis of Theorem 2.6 hold. Suppose in addition 
(3.7) holds. Then with uhn the solution to (2.20) and (2.18) with the local truncation 
error set to zero (3.8) holds. 

The next results show that the discrete problems have a solution. 
THEOREM 3.5. Consider the system of equations. 

(3.9) ANw = h2fN + h2b, 

where b is a constant vector and fN is as in Theorem 3.2. Then (3.9) has a solution for 
h sufficiently small. 

Proof. The system (3.9) is equivalent to the system 

w = h 2ANfN + h 2A b. 

Then, proceeding exactly as in Theorem 3.2 using Lemma 3.1, we can conclude that as 
long as h is sufficiently small 

11 W11.< 1 -K *h - 
T 

1-KO 

where K * is independent of h. Thus, the sphere S = {wl 1I wI1j. < T} is mapped into 
itself; and the conclusion follows by the Brouwer fixed point theorem. 

Since by the Mean Value Theorem, our discrete problems are equivalent to 

ANu=h2F(0)+h2F+h26,where [F(0)] i=f(thiI 0, 0), 6 60,. . .. ,0, a 

and F is given analogously to that in Corollary 3.3, the last theorem applies. 
Using the results we have obtained here, it is not difficult to follow standard 

techniques to show that under slightly strengthened hypothesis Newton's Method con- 
verges to the solution of our discrete systems. For more on this see Henrici [51, 
Keller [6] or Lees [8]. 

4. Numerical consideration. In this section we will consider the method applied 
to problem (1.1) when the first derivative appears in both the differential equation 
and the boundary condition. (If, for example, no first derivative appears at all, then 
the algorithm reduces to the well-known Numerov method; see Lees [81.) 

Table 4.1 gives a comparison of the amount of work needed to solve problem 
(1.1) for a fixed N, three fourth order methods and a linear f. In the table, function 
evaluations refer to an evaluation of f(t, y(t), y(')(t)). Method (1) is (2.17)-(2.18) 

and (2.18)-(2.20); Method (2) is the classical 0(h2) algorithm followed by Richardson 
extrapolation; Method (3) refers to collocation type procedures. We need not con- 
sider Keller's Method here as it cannot compete with (2) for this simple problem. We 
have chosen a linear equation to remove the number of iterations for solving the non- 
linear equations as a variable. However, if one considers, say, the number of oper- 
ations per Newton step, there is very little difference in the conclusions that can be 
drawn. 

From Table 4.1 it appears that the superiority of (1) or (2) on the basis of work 
done depends on the relative cost of multiplication versus the particular functional 
evaluation. The comparison between (1) and (3) is even more complex. At least two 
things must be considered, both dependent on the basis chosen for the space of splines. 



102 ROBERT S. STEPLEMAN 

Measured (1) (2) (3) 

Function Evaluations 4N - 5N 3N N 

Multiplications to Solve Linear Equations 5N 15N 1 IN - O(N2) 

TABLE 4.1 

We must be aware not only of the bandwidth that the choice gives, but of its stability 
properties. As was pointed out in Section 1, some methods that give small bandwidth 
allow large subdiagonal elements relative to the diagonal elements, leaving the possibility 
of instability due to roundoff error. This, of course, can be corrected by pivoting in 
the linear system. It remains an open question whether this is often needed; however, 
it is clear that the small bandwidth methods, which appear to need less work than our 
algorithm, must be used with some care. 

Since we could not find any problems in the literature for collocation when the 
boundary conditions contain derivatives, we will not consider these any further. How- 
ever, based on some comparisons given in [101, for the no derivative case, it seems 
reasonable to expect collocation to give errors of about the same magnitude as our 
method. 

In the following table, which describes some of the numerical experiments per- 
formed, Methods (1) and (2) remain the same while Method (3) is now the classical 
0(h2) algorithm. All experiments were performed on the Spectra 7 in double precision, 
and all errors are measured in the maximum norm. The boundary value problems 
solved were: 

Iy(2) = K(Y(1))2 + y2]t2ex, 

Y(O) 
= 0, 

y(l) + 
y(1)(l) 

= 2e, 

( y(2) = [e2y + (y) ?))21 /2, 
(B) 

y(O) -y(l)(0) = 0' y(l) + y~l)(1) =- In 2 -1/2 

(C) 
jy(2)= (y 

+ xy 1))/(l 
+ 

X), 

iO) - 2y('(0) = - 1, y(l) + 2y(')(1) = 3e. 

The solutions of (A) and (C) are y(x) = ex, while (B) has the solution y(x) = 

log(l/(l + x)). 

Table 4.2 shows several things. First, that the error in our method is order h4. 
Second, that for the same number of points (but more work) you get much better 
answers than the classical order h2 algorithm. Finally, that the answers in these particu- 
lar cases seem to be somewhat less accurate than the 0(h2) algorithm plus Richardson 
extrapolation. In Table 4.2 the notation, say, .13(- 4) means .13 x 10-4. 
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Differential Equation #Points Error (1) Error (2) Error (3) 

4 .13(-4) .63(-5) .11(-1) 

(A) 8 .78(-6) .40(-6) .28(---2) 

16 .32(-7) .70(-3) 

4 .34(-3) .17(-4) .73(---2) 

(B) 8 .56(-4) .12(---5) .18(---2) 

16 .37(-5) .46(-3) 

4 .58(-4) .93(-5) .10(- 1) 

(C) 8 .41(-5) .60(-6) .26(-2) 

16 .26(-6) .66(-3) 

TABLE 4.2 
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